在一条环路上有 n
个加油站,其中第 i
个加油站有汽油 gas[i]
升。
你有一辆油箱容量无限的的汽车,从第 i
个加油站开往第 i+1
个加油站需要消耗汽油 cost[i]
升。你从其中的一个加油站出发,开始时油箱为空。
给定两个整数数组 gas
和 cost
,如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1
。如果存在解,则 保证 它是 唯一 的。
示例 1:
输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2] 输出: 3 解释: 从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油 开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油 开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油 开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油 开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油 开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。 因此,3 可为起始索引。
|
示例 2:
输入: gas = [2,3,4], cost = [3,4,3] 输出: -1 解释: 你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。 我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油 开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油 开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油 你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。 因此,无论怎样,你都不可能绕环路行驶一周。
|
提示:
gas.length == n
cost.length == n
1 <= n <= 105
0 <= gas[i], cost[i] <= 104
C++
class Solution { public: int canCompleteCircuit(vector<int>& gas, vector<int>& cost) { int n = gas.size(); vector<int> rest(n,0); int sum = 0; for(int i = 0; i < n; i ++){ rest[i] = gas[i] - cost[i]; sum += rest[i]; } if(sum < 0) return -1;
int curSum = 0; int res = 0; for(int i =0; i < n; i ++) { curSum += rest[i]; if(curSum < 0) { curSum = 0; res = i + 1; } } return res; } };
|
给定一个二叉树,我们在树的节点上安装摄像头。节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。计算监控树的所有节点所需的最小摄像头数量。
示例 1:
输入:[0,0,null,0,0] 输出:1 解释:如图所示,一台摄像头足以监控所有节点。
|
示例 2:
输入:[0,0,null,0,null,0,null,null,0] 输出:2 解释:需要至少两个摄像头来监视树的所有节点。 上图显示了摄像头放置的有效位置之一。
|
提示:
- 给定树的节点数的范围是
[1, 1000]
。
- 每个节点的值都是 0。
C++
class Solution { public: int res = 0; int minCameraCover(TreeNode* root) { if(!root) return 0; if(dfs(root) == 2) res ++; return res; } int dfs(TreeNode* root) { if(root == nullptr) return 1; int left = dfs(root -> left); int right = dfs(root -> right); if(left == 2 || right == 2){ res ++; return 0; }else if(left == 0 || right == 0) { return 1; }else return 2; } };
|