0%

799. 香槟塔

799. 香槟塔

我们把玻璃杯摆成金字塔的形状,其中 第一层1 个玻璃杯, 第二层2 个,依次类推到第 100 层,每个玻璃杯 (250ml) 将盛有香槟。

从顶层的第一个玻璃杯开始倾倒一些香槟,当顶层的杯子满了,任何溢出的香槟都会立刻等流量的流向左右两侧的玻璃杯。当左右两边的杯子也满了,就会等流量的流向它们左右两边的杯子,依次类推。(当最底层的玻璃杯满了,香槟会流到地板上)

例如,在倾倒一杯香槟后,最顶层的玻璃杯满了。倾倒了两杯香槟后,第二层的两个玻璃杯各自盛放一半的香槟。在倒三杯香槟后,第二层的香槟满了 - 此时总共有三个满的玻璃杯。在倒第四杯后,第三层中间的玻璃杯盛放了一半的香槟,他两边的玻璃杯各自盛放了四分之一的香槟,如下图所示。

img

现在当倾倒了非负整数杯香槟后,返回第 ij 个玻璃杯所盛放的香槟占玻璃杯容积的比例( ij 都从0开始)。

示例 1:
输入: poured(倾倒香槟总杯数) = 1, query_glass(杯子的位置数) = 1, query_row(行数) = 1
输出: 0.00000
解释: 我们在顶层(下标是(0,0))倒了一杯香槟后,没有溢出,因此所有在顶层以下的玻璃杯都是空的。

示例 2:
输入: poured(倾倒香槟总杯数) = 2, query_glass(杯子的位置数) = 1, query_row(行数) = 1
输出: 0.50000
解释: 我们在顶层(下标是(0,0)倒了两杯香槟后,有一杯量的香槟将从顶层溢出,位于(1,0)的玻璃杯和(1,1)的玻璃杯平分了这一杯香槟,所以每个玻璃杯有一半的香槟。

示例 3:

输入: poured = 100000009, query_row = 33, query_glass = 17
输出: 1.00000

提示:

  • 0 <= poured <= 109
  • 0 <= query_glass <= query_row < 100

C++

class Solution {
public:
double champagneTower(int poured, int query_row, int query_glass) {
double dp[101][101] = {0};
dp[0][0] = poured;
for(int i = 0; i <= query_row; i ++) {
for(int j = 0; j <= i; j ++) {
if(dp[i][j] > 1) {
double remain = dp[i][j] - 1;
dp[i][j] = 1;
dp[i + 1][j] += remain / 2;
dp[i + 1][j + 1] += remain / 2;
}
}
}
return dp[query_row][query_glass];
}
};